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Hartree-Fock-Roothaan Calculations for Ground States of
Some Atoms Using Minimal Basis Sets of Integer and
Noninteger n-STOs
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Hartree-Fock-Roothaan (HFR) calculations for ground states of some atoms, i.e. He, Be, Ne, Ar, and Kr have
been performed using minimal basis sets of Slater type orbitals (STOs) with integer and noninteger principal quan-
tum numbers (integer n-STOs and noninteger n-STOs). The obtained total energies for these atoms using minimal
basis sets of integer n-STOs are in good agreement with those in the previous literature. On the other hand, for the
case of minimal basis sets of noninteger n-STOs, athough the calculated total energies of these atoms agree well
with the results in literature, some striking results have been obtained for atoms Ar and Kr. Our computational re-
sults for the energies of atoms Ar and Kr are dightly better than those in literature, by amount of 0.00222 and
0.000054 a.u., respectively. The improvement in the energies of atoms Ar and Kr may result from the efficient cal-
culations of one-center two-electron integrals over noninteger n-STOs. For some atomic ions in their ground state,
HFR calculations have been carried out using minimal basis sets of noninteger n-STOs. The obtained total energies
for these atomic ions are substantially lower than those available in literature.
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Introduction

The selection of a suitable basis function is of prime
importance in the construction of wave functions for
atoms and molecules. The commonly used basis func-
tions in Hartree-Fock-Roothaan (HFR) methods are
Gaussian Type orbitals (GTOs) and Slater type obitals
(STOs). GTOs are extensively used in molecular calcu-
lations because their multicenter integrals can be calcu-
lated easily. However, it is well-known that STOs yield
better convergence of the variationa wave functions
than GTOs since they possess the singularities of the
solution of Schrodinger equation, namely, cusp at nu-
clei® and exponential decay at large distances.?

On the other hand, multicenter molecular integrals
over STOs are difficult to calculate. Due to the huge
advance in computer technology and applied mathe-
matics, the use of STOs in molecular electronic struc-
ture calculations has drawn great attention from several
groups.>® The studies by these groups are limited to the
use of STOs with integer principal quantum numbers
(integer n-STOs), however.

As is well-known from the literature STOs with
noninteger principa quantum numbers (noninteger
n-STOs) provide better atomic energies than usua
STOs.? The problem in using noninteger n-STOs is the
efficient calculation of multicenter integrals. Multicen-
ter integrals over noninteger n-STOs are evaluated, es-
pecialy, by means of Fourier transform convolution
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theorem®k which is not very well adapted to practical
use. Therefore, an efficient agorithm for the evaluation
of multicenter integrals over noninteger n-STOs has to
be devel oped.

Recently, we have presented an efficient algorithm
for the evauation of two-center overlap and two- and
three-center nuclear attraction integrals'® and multielec-
tron multicenter molecular integrals over noninteger
n-STOs™

The purpose of this work is to calculate the ground
state energy of some closed shell atoms, i.e. He, Be, Ne,
Ar, and Kr using minimal basis sets of integer and non-
integer N-STOs, based on the formulae we presented for
one-center overlap, nuclear attraction and kinetic energy,
and one-center two-electron integrals over noninteger
n-STOs.

Atomic units (a.u.) will be used throughout this pa-
per.

Computational methods

In this work we used real STOs as basis sets which
are defined in the most general case by

(20)""?

r (2n+1) " ee()S(04)

X (¢.F) =

D



Slater type orbitals

where ¢ is orbital exponent, S (6, ¢) is red
spherical harmonics and 7" is gamma function.*?

In the HFR equations of atoms, two types of inte-
grals arise, namely, one-electron one-center integral and
two-electron one-center integral.

Types of one-center integrals arising in atomic RHF
calculations with noninteger n-STOs are as follows:
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Nuclear attraction integral

nlmnlm ZZ IXnIm Xrﬂrﬁ (Z I')
2 ©)
= —Snm n' —1)I" ¢.¢
2n’(2n’—1) m(n =) m( )
Kinetic energy integral
Tnlm n'l'm (Z’Z'):
1
2J.anm Zr)Danm(Z"?)dV_ Z'Z'
0
Esmmmm (¢.0) sn.m(ﬁ Ly (C47)+ 0
4(n+1)(n—r 1) O
Snm n'— Z Z
2n' (2 —1) (2r —2)(2r1 —g) ( )ﬁ
4
One-center two-electron integral
C’l'l”lv”i'inﬁvnz|2nhv”2’2”h( 151’Z£ )
_ IXEM (Zlfal))&m (Zi’ral) =
Xngl,m, (Zz! az)anzmz( 2 aZ)dVldVZ 5

= Noy (¢2.¢5) Nrr (¢245)

; () ( m, IM)’
LM Ah cHMI( ( M, Izrﬁz)AﬁmzR;lilNl (2122)

where

Chin. J. Chem., 2004, \ol. 22, No. 11 1263
N, = n+n, N,= n,+nj,
2=+, ,=0,1 5,
+1 n+1
, 27 e 2z')" 2
ey @)

Jr (en+1) r (2m+1)
and the range of the summation indices L and M are as
follows
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In Eq. (5), the quantity C'™ ‘(Imlm) and A",
are defined in Ref. 3a and the quantity RNN ( 2,2,

istheintegral of the form
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which can be calculated as follows
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where ,F (ab,c,x) are Hypergeometric functions.””

The accuracy of HFR calculations with noninteger
n-STOs depends on the efficient evaluation of the
one-center Coulomb integrals.

Computational details

In this work, al the integrals appearing in the HFR
equations of atoms are calculated on Pentium |1 by con-
structing computer programs in Turbo Pascal 7.0 pro-
gramming language and the accuracy is approximately
in the range of 10 2>—10 %. One-center two-electron
integrals have been calculated by using Eq. (5) which
has been tested for wide range of molecular parameters.
Here, tridiagonalization procedure was used for diago-
nalization of Fock matrix.

Molecular wave function parameters (Table 1) for
the atoms studied here were taken from the literature:
for minimal basis set of integer n-STOs calculations the
datain Ref. 13b were used and for minimal basis set of
noninteger n-STOs the datain Ref. 14c were used.

Results and discussion

On the basis of the formulae presented here and our
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recent works, ground state total energies of some closed
shell atoms have been calculated within HFR frame-
work using minimal basis sets of integer and noninteger
n-STOs.

In the calculations, the efficient evaluations of
two-center one-electron and one-center two-electron
integrals were needed. For integer n-STOs, both
one-center one- and two-electron integrals are easy to
evaluate. However, the computation of one-center
two-electron integrals over noninteger n-STOs is rather
demanding. In this work, the formula for one-center
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two-electron integrals over noninteger n-STOs has been
tested extensively for wide range of atomic parameters.
Also, in Table 2, some values of one-center two-€electron
integrals are listed with no comparison due to the scar-
city of the numerical values in literature. The values in
Table 2 for one-center two-electron integrals over non-
integer n-STOs have been tested with the limit values of
integer N-STOs and 18-decimal digit accuracy has been
achieved.

Using the computer programs constructed for mo-
lecular integrals, the calculated HFR total energies of

Tablel Wave functionsfor the ground states of atoms He, Be, Ne, Ar, and Kr

Atom He Be Ne Ar Kr
Basis  Integer Noninteger Integer Noninteger  Integer Noninteger Integer  Noninteger Integer Noninteger
function n-STOs n-STOs n-STOs  n-STOs n-STOs n-STOs n-STOs n-STOs n-STOs  n-STOs
Ng 1 0.955057 1 0.979651 1 0.991639 1 0.995060 1 0.997687
g 1.6875 1.611725 3.6848  3.611609 9.6421 9.555679 175075 17512938  35.2316 35.483670
Neo 2 2.199546 2 2.109526 2 2.476905 2 2.650223
o 0.9560 1.048176 2.8792 3.044593 6.1152  7.516514 13.1990 17.599108
Ng 3 2.596234 3 3.111484
T 25856  2.293547 7.0109 7.141756
Nsy 4 2.729485
o 2.8289  2.100332
Np1 2 1.585424 2 1.814212 2 1.916506
S 2.8792 2.282325 7.0041  6.293187 16.0235 15.219358
Np2 3 2.226151 3 2.783513
S 2.2547 1722174 6.8114 6.378034
No3 4 2.396934
$p3 24423  1.561459
Nat 3 2.272543
Sar 6.8753  5.188147
Table2 The computer values of two-center one-electron integrals over noninteger n-STOs (in a.u.)
ol omeo o ' om hom ony G & & ey Eq. (5)
29 1 1 25 1 1 55 2 1 35 2 1 161 2.60 6.10 230 3.4839235973911513E—01
09 O 0 27 0 0 26 2 1 24 2 1 5347 2785 11.35 3.65 3.8897849665973410E—01
29 2 2 27 2 2 22 2 0 18 2 O 1098 131 982 155 1.9512383652568227E—02
17 1 1 151 1 23 2 0 19 2 0 498 127 982 155 1.4311274348392119E—01
18 1. —-1 16 1 —1 21 2 1 39 2 1 4.87 7.52 8.29 6.55 1.0432936214667349E+ 00
35 3 2 45 2 2 55 3 1 28 2 1 457 652 329 455 3.5810194063234064E—02
65 3 1 8 3 1 58 3 2 28 3 2 275 256 892 554 2.7026708833963397E—01
78 2 2 65 2 2 68 2 2 74 2 2 375 284 567 648 4.6398720629950685E— 01
52 2 1 54 2 1 43 1 1 45 1 1 0.65 0.87 9.45 856  1.2731577894362983E—01
46 3 3 64 3 3 54 3 3 37 3 3 185 258 552 348 4.0136008684079511E—01
35 1 0O 281 0 24 0 0O 34 0 O 0.08 0.05 0.04 0.07 1.3381948774922083E—02
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Table3 Ground state energies of some closed shell atoms (in a.u.)
Atom Thiswork Hartree-Fock”
Integer n-STOs Noninteger n-STOs
He — 2.84765625000000 —2.85420849702552 —2.861679996
Be —14.5567398577072 —14.5642517231389 —14.57302317
Ne —127.812180939758 —128.298751666422 —128.5470981
Ar —525.765253605873 —526.589917170338 —526.8175128
Kr —2744.51962192717 —2750.82871594311 —2752.054977

" Hartree-Fock energies for the ground states of these atoms are taken from Ref. 15.

these atoms are listed in Table 3 for both integer n-STOs
and noninteger n-STOs. The numeric HF values are also
added to Table 3 for comparison.

Our results for the case of integer n-STOs agree well
with the previous literature.”®* Moreover, the obtained
total energies for the atoms He, Be, Ne, Ar, and Kr us-
ing minimal basis set of noninteger N-STOs agree well
with the results of Koga, except for atoms Ar and Kr.
Our results are dightly better than those of Koga
et al.™ by amounts of 0.00222 a.u. for Ar and 0.000054
au. for Kr.

It was also observed that the d-orbital energies of
atoms Ar and Kr are positive for basis set of integer
n-STOs whereas the use of basis set of noninteger
n-STOs will change them to physically realistic negative
orbital energies. The relative error was also investigated
in energies with respect to numerical HF values (Figure
1). It can be seen from Figure 1 that the relative energy
error with respect to HF limits grows by increasing
atomic numbers. Meanwhile, it should be noted that
total energy improvement does not always increase by
increasing atomic number Z.
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Figurel Tota energy errorswith respect to the HF limit.

Ground state energies of some atomic ions, such as
H, Bez+1 B3+, C4+, N5+, 06+, F7+, Nes+ and Na9+
have been calculated using minimal basis set of nonin-
teger n-STOs in HFR approximation (Table 4). It is seen
from Table 4 that the obtained total energies are superior
to those of Saturno and Parr.” The discrepancies be-
tween our results and those of Koga for ground state of
neutral atoms and those of Saturno and Parr for atomic
ions may result from the more accurate calculation of
two-€electron one-center integrals and huge advance in
computer technology. Note that an error in the range of
10 ®—1078 will deteriorate the energy by an amount of

10 2 au. In al the calculations presented here, Virial
coefficients do not deviate from the exact value (—2) by
more than 1X10 " which means that our calculations
are sufficiently accurate.

Table4 Energies of some atomicions(inau.)

Atom Thiswork Ref. of

H™ —4.78873918637182E— 1 —0.4727
Be?! —1.36043276000311E+1 —13.5977
B3* —2.10793565804105E+ 1 —21.9727
c* —3.23543706866974E + 1 —32.3476
NS —44.7293807706675E+ 1 —44.7227
o%* —5.91043649498902E+ 1 —59.0976
F* —7.54793862109695E+ 1 —75.4725
Ne®* —9.38543843058461E+ 1 —93.8474
Na’* —1.14229345606935E + 2 —114.223

As is well-known, in molecular calculations, the ac-
curacy in energies of atoms, molecules, clusters and
solids is achieved by using extended basis functions.
The use of extended basis functions needs more mo-
lecular integrals to be evaluated. That is, the calculation
of these molecular integrals would require more and
more CPU time. It is understood from this work that the
use of minimal basis sets of noninteger n-STOs is ad-
vantageous over minimal basis sets of integer n-STOs.
Namely, lower energies can be obtained using minimal
basis sets of noninteger n-STOs instead of minimal ba-
sis sets of integer n-STOs. As a conclusion, it can be
stated that minimal basis sets of noninteger n-STOs can
be used in semi-empirical and density functiona studies
of heavy atoms, large molecules and clusters, due to the
advantage of minimal basis sets of noninteger n-STOs
as shown here.

Work isin progress in our laboratory for the calcula-
tion of open shell atoms based on the development for
the calculation of multicenter integrals over noninteger
n-STOs.
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